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We combine GPS data on changes in average distance travelled by individuals 
at the county level with Covid-19 case data and other demographic 
information to estimate how individual mobility is affected by local disease 
prevalence and restriction orders to stay at home. We find that a rise of local 
infection rate from 0% to 0.003%4 is associated with a reduction in mobility 
by 2.31%. An official stay-at-home restriction order corresponds to reducing 
mobility by 7.87%. Counties with larger shares of population over age 65, 
lower share of votes for the Republican Party in the 2016 presidential election, 
and higher population density are more responsive to disease prevalence and 
restriction orders.

1 PhD student in Economics, University of Wisconsin-Madison.
2 PhD student in Economics, University of Wisconsin-Madison.
3 PhD student in Economics, University of Wisconsin-Madison.
4 This is the median infection rate (number of confirmed cases divided by county population) across counties 

with positive number of confirmed cases as of 20 March 2020.
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1 Introduction

In the face of the rapidly growing threat posed by the COVID-19 pandemic, public health

experts and economists alike are relying on epidemic models to make predictions and evaluate

policies. In the standard SEIR model (e.g. Wang et al. (2020)), the effective reproduction

rate Rt measures the actual average number of secondary cases per infected case at time t.

It is widely acknowledged that Rt reflects both the nature of the virus (including the basic

reproduction rate R0), as well as the effectiveness of various protective measures taken by

individuals and governments in response to available information. In the case of COVID-

19, the key policy measure to reduce Rt is a restriction order to stay-at-home. To date,

this policy has been promoted by governments across the globe. It is an open question,

however, to what extent individuals alter their mobility in response to government orders. It

is also little known how they adjust traveling behaviour when perceived risks of COVID-19

increases, but the government has not yet announced a restriction order.

Mobility statistics provide invaluable information as to whether people are actively reduc-

ing their exposure to COVID-19 by reducing distances traveled and avoiding social contact,

and by how much. In this paper, we use a novel dataset from Unacast, a location data

firm. Their dataset includes a measure of daily average changes in distance traveled (∆it) in

every U.S. county. Their measurement of distance travelled is a relative change to a baseline

measure of distance travelled based on historical data, so ∆it is an important measure of

changing behaviours in response to the COVID-19 pandemic. We use this data to estimate

how the average change in distance traveled is related to perceived risk of contracting the

disease (Ωit) and restriction orders Iit. We also investigate how these relationships depend on

demographic characteristics (Xi). The methodology here is similar to that in Auld (2006),

where the author estimates elasticities of risky behavior to local prevalence of AIDS, and

explored heterogeneity across observable characteristics.

The estimates obtained here contribute to the current discussion in three ways. First,

our results provide an estimate of how much human behavior, in our case average distance
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traveled, responds to perceived risks of contracting the disease. Second, the results give us

a sense of how important government announcements are in affecting people’s behaviour.

Lastly, by considering demographics, political attitude and population density, we evaluate

whether characteristics of the underlying population play a role in determining the effec-

tiveness of restriction orders and responses to disease prevalence. In particular, since older

individuals are at higher risk2, we would be interested in whether counties with relatively

high elderly populations have altered their behavior more than younger counties. There

has also been some discussion that political partisanship is an indicator of skepticism in

the legitimacy of the COVID-19 outbreak 3. We also evaluate whether counties with higher

population density adjust behavior more due to the fact that the virus is spreading mainly

through interpersonal interactions. To summarize, the novel data and careful analysis in

this paper contributes to the understanding of mobility changes amid COVID-19 epidemic

while focusing on levels of travel distance and raw percentage change without considering

confounding factors such as local disease prevalence and population density could paint an

incomplete picture.4

Another paper in this issue, Painter and Qiu (2020), also investigates how political be-

liefs affect compliance with COVID-19 restriction orders. They define a social distancing

measure using the fraction of mobile users completely staying at home with location data

from SafeGraph Inc. Their panel regression results support our finding that counties with a

lower share of votes for the Republican Party in the 2016 Presidential Election respond less

to restriction orders. They also use party misalignment to argue that faith in the credibility

of government officials affects adherence to those policies. Our paper differs from theirs in

three ways. First, besides political affiliation, we also demonstrate the importance of other

heterogeneities such as age structure and population density. Second, we focus on people’s

2See, e.g. the CDC guidelines: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-
precautions/people-at-higher-risk.html

3e.g. https://www.nytimes.com/interactive/2020/03/21/upshot/coronavirus-public-opinion.html
4e.g. https://www.nytimes.com/interactive/2020/04/02/us/coronavirus-social-distancing.

html

88
C

ov
id

 E
co

no
m

ic
s 4

, 1
4 

A
pr

il 
20

20
: 8

6-
10

2

https://www.nytimes.com/interactive/2020/04/02/us/coronavirus-social-distancing.html
https://www.nytimes.com/interactive/2020/04/02/us/coronavirus-social-distancing.html


COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

reduction in mobility to factors beyond restriction orders, such as confirmed cases in both

local and neighboring counties. This is important since as we show in Figure 7, average

mobility starts to decrease long before restriction orders were announced. Lastly, we build

a model of individual behavior; our estimates aim at providing a benchmark value for indi-

vidual responses to overall perceived COVID-19 risks that can be used in other studies (e.g.

Kaplan et al. (2020)). We view Painter and Qiu (2020) as complementary to our paper.

In the rest of the paper, we outline a simple model in section 2. In section 3 we discuss

our novel data source on daily travel patterns and how we have augmented it with COVID-19

data. In section 4 we present our preliminary results and argue that even the simple model

provides a solid baseline. We finish with section 5 where we summarize our current progress

and outline our plan for current and future work.

2 Simple Model

In this section, we present a simple model that relates an individual’s travel decision to

perceived disease prevalence. This model provides theoretical motivation for the estimation

strategy in Section 4.

Consider an individual that derives utility U(d) = dσ/σ from distance traveled (d) with

0 < σ < 1. The cost of traveling each unit of distance is composed of one component that is

independent of the epidemic Π, and one component that is the product of a linear perceived

risk index of contracting the disease (Ω > 0) and the utility cost of contracting the disease

(Z). An individual’s utility is given by:

U(d) = dσ/σ − Πd− ΩZd

= dσ/σ − Π

(
1 + Ω

Z

Π

)
d

≈ dσ/σ − Πe
Z
Π

Ωd

(1)
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The solution of the utility maximization problem is therefore:

d∗ =
(

Πe
Z
Π

Ω
) 1
σ−1

(2)

As can be seen, when an individual perceives a higher risk level, corresponding to higher Ω,

individuals decide to travel less, i.e. by reducing d. We will carefully define Ω later.

If we compare an individual’s decision to travel at time t under perceived risk index Ωt

versus some benchmark date t0 with Ω0, we get a measure of change in distance traveled:

∆t =
d∗t
d∗0
− 1 = e

Z
(σ−1)Π

(Ωt−Ω0) − 1 ≡ eκΩt − 1 (3)

since before the outbreak Ω0 = 0.

Equation (3) is suggestive of a strategy to estimate how the index of perceived risk, Ω,

affects the percentage change in distance traveled from date t relative to date 0. We propose

to estimate κ via nonlinear least squares, after we consider an appropriate definition of Ωt

below in Section 4.5

3 Data

We construct a county-level panel data for the contiguous United States. with dates covering

2/24/2020 to 3/25/2020. Our data includes the following information:

1. Daily confirmed coronavirus cases compiled by The New York Times.6

2. Daily changes in average distance traveled relative to the same weekday pre-COVID-

19, provided by Unacast. Unacast use GPS signals from mobile devices to calculate

5Since change in distance traveled (∆t) is large in the data, we do not approximate it by log(d∗t /d
∗
0).

6We also compared this data to case data compiled by the Johns Hopkins University Center for Systems
Science and Engineering and found the data to be essentially identical. Our results are robust to both
sources.
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average distance traveled by device-holders in each county at a daily frequency.7

3. Enacted social-distancing policies (stay-at-home restriction orders) as of 3/28/2020 as

compiled by the New York Times.

4. Demographic data is sourced from the MIT Election Data and Science Lab (MEDSL).

MEDSL data conveniently matches demographic information from the 2012-2016 5-

year ACS, to county-level 2016 Presidential Election Results.

In total, our data covers 3142 U.S. counties with 94,116 observations. The summary statistics

are given in Table 1.

Figure 1 plots the changes in average distance traveled relative to the same weekday pre-

COVID-19 on 2/24/2020. The overall light color in the figure indicates that at the beginning

of the epidemic when there were very few cases confirmed (see Figure 3), there was not much

change in population mobility.

When we turn to a more recent date, 3/23/2020, Figure 2 shows that average distance

traveled decreases significantly in most counties across the U.S., with particularly large drop

in New York, California, Colorado and Florida. Figure 4 shows that these are also places

with relatively large number of reported COVID-19 cases.

Figure 5 and 6 show the share of counties and population that is under a stay-at-home

order respectively. Both measures start to grow on 3/19 as national cases surpass 10,000. As

of 3/25/2020, more than 30% of the counties and 55% of the national population is under

government orders to stay-at-home unless for essential activities.

Figure 7 shows the 10th quantile, median, and 90th quantile of the changes in average

distance traveled across counties in our sample. We can see that mobility starts to decrease

for median counties at around 3/10, well before the announcements of restriction orders as

shown in Figure 5 and 6.

7For more information on methods of data collection and aggregation, visit unacast.com and Unacast
COVID-19 Social Distancing Scoreboard.
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Figure 1: Change in distance traveled relative to the same weekday pre-COVID-19, 2/24/2020

−0.5

0.0

∆

Figure 2: Change in distance traveled relative to the same weekday pre-COVID-19, 3/23/2020
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0
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Figure 3: Number of confirmed cases, 2/24/2020
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Figure 4: Number of confirmed cases, 3/23/2020
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Figure 5: Share of Counties under Stay-at-Home
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Figure 6: Share of Pop under Stay-at-Home
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Figure 7: Quantiles of Changes in Average Distance Traveled Across Counties

Table 1: Summary Statistics of Pooled Dataset

Statistic Mean St. Dev. Min Max

Total Cases 3.004 61.546 0.000 6, 154.000
Cases, Share of Pop 0.001% 0.01% 0.00% 0.5%
Neighbor Cases, Weighted 0.005% 0.01% 0.00% 0.2%
Pct Chg in Distance Travelled −0.079 0.158 −0.879 1.388
Share of Pop Over Age 65 17.502 4.319 3.855 53.106
Share of Republican Votes, 2016 0.629 0.156 0.041 0.916
Population Size, Thousands 104.648 330.248 1.233 10, 057.160
Density: Thousands per Sq. Mile 0.268 1.753 0.001 69.468

Note: See Section 4 for formal definition of the Neighbor Cases variable.
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4 Empirical Results

Motivated by the model outlined in (3), our baseline regression model is given by:

∆it = β0 + β1 exp(β2Ωit) + β3Iit + β4 exp(β2Ωit)× Iit + βXIit ×Xi + ρ∆i,t−1 + εit (4)

where the variables are defined as follows:

Dependent variable (∆it)(∆it)(∆it) Mobility change is measured by the percentage difference in

average daily distance in county i at time t, compared to the average in the four weeks

before COVID-19 outbreak, by weekday.

Perceived risk index of contracting COVID-19 (Ωit)(Ωit)(Ωit) We assume that individuals’ per-

ception of risk is affected by COVID-19 prevalence in both local and neighboring coun-

ties, as well as population demographics. We propose using a linear index, Ωit, defined

as:

Ωit = Ci,t−1 + γ
∑
j 6=i

wijCj,t−1 + γXX + γCI

[
Ci,t−1,

∑
j 6=i

wijCj,t−1

]
×X (5)

where each term in (5) denotes

1. Ci,t−1, is total confirmed cases divided by population at county i at time t − 1.

To ease interpretation of coefficients, we then normalize the median prevalence

level for counties with positive COVID-19 cases on 3/20/2020 to be one (0.003%

- Mecklenburg, North Carolina).

2.
∑

j 6=iwijCj,t−1, a weighted average of confirmed cases at neighboring counties

measured at time t − 1. For simplicity, we let weight be proportional to the

inverse of distance between county centroids with
∑

j 6=iwij = 1.We adopted the

same normalization as in Ci,t−1.

3. Xi, County-level demographics include age structure (share of population over

65), political attitude (share of the population that voted Republican in the 2016
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Presidential Election), and population density (thousand people per square mile).

In this baseline model, we interpret Ωit as a linear approximation perceived risk.

Restriction orders (Iit)(Iit)(Iit) Restriction order Iit is a dummy variable that takes the value of

one if an order to stay-at-home is in effect in county i at date t; zero otherwise.

In (4), we allow individuals’ response to perceived risk to differ depending on whether

the government have announced restriction or not. We also consider the possibility that

responses to a restriction order might vary based on demographic characteristics. In (5),

perceived risk index Ωit is affected by both local and neighborhood COVID-19 confirmed

cases, as well as underlying population characteristics. We also include an interaction term

to study how population characteristics affect individuals’ perceived risks as the disease

become more widespread. Note that the coefficient in front of Ci,t−1 in Equation (5) is

normalized to 1, since the overall scale of the γ’s cannot be separately identified from β2 in

Equation 4.

Our main results are shown in Table 2. The top-half of the table shows estimates of

the parameters in Equation (4) while the bottom-half shows coefficients in the perceived

risk equation (5). In subscripts of coefficients, we use {P,O,D} to represent the share of

population that voted Republican in the 2016 Presidential Election, share of population with

age over 65, and population density (in thousands of people per square mile) respectively.

Subscripts {L,N} refer to the interaction terms of population characteristics with local

confirmed cases Ci,t−1 and neighborhood confirmed cases
∑
j 6=i

wijCj,t−1.

We start the interpretation of the main results from the top. The positive value of β̂1

combined with negative β̂2 implies that an increase in perceived risk index Ωit reduces leads

to a decrease in ∆it.

To get a sense of the magnitude of the effect of restriction orders on mobility, we consider

the case where the government announces a stay-at-home order in a county with median

demographic characteristics (P̄ , Ō, D̄) and our median estimate of perceived risk index,
¯̂
Ω.
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Table 2: Main Results

∆
Estimate SE

β0 −0.1222∗∗∗ (0.0011)
β1 0.1349∗∗∗ (0.0031)
β2 −1.5616∗∗∗ (0.2554)
β3 −0.0685∗∗∗ (0.0106)
β4 −0.0890∗ (0.0439)
βPI 0.1810∗∗∗ (0.0141)
βDI −0.0025∗∗∗ (0.0006)
βOI −0.0034∗∗∗ (0.0005)
ρ 0.5141∗∗∗ (0.0029)
ΩΩΩ
γ 0.2132∗ (0.0952)
Political Affiliation
γP −0.0056 (0.0180)
γPC −1.1557∗∗∗ (0.1118)
γPN −0.4063∗∗∗ (0.1267)

Population Density
γD 0.0034 (0.0029)
γDC −0.0959∗ (0.0430)
γDN 0.5541∗∗∗ (0.1153)

At Risk Share
γO 0.0033∗∗∗ (0.0008)
γOC −0.0069 (0.0094)
γON 0.0439∗∗∗ (0.0076)

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Num. Obs = 91080
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Based on our estimates from Table 2, we find that the restriction order would reduce mobility

by 7.87% for a county with characteristics P̄ , Ō, D̄, and perceived risk index
¯̂
Ω.

The coefficients from interacting restriction order with population demographics tell an

interesting story. We illustrate this point with the hypothetical county with characteristics

(P̄ , Ō, D̄) and perceived risk index
¯̂
Ω) as before. If we perturb the characteristics {P,O,D}

one at a time by increasing each in turn by one standard deviation of that characteristic, how

would the effect of the restriction order change? Recall that this baseline effect is a 7.87%

decrease. The estimates suggest that the effect of a restriction order would be of smaller

magnitude, going to a 5.05% decrease with a 15.6 percentage point increase in the share of

the population that voted Republican in the 2016 Presidential Election; the effects would be

stronger when the share of the population over age 65 increases by 4.3 percentage points, with

the effect size of a 9.33% decrease. Lastly, when population density increases by 1000 people

per square mile, we would expect the effect of a restriction order to be stronger, an 8.30%

decrease. These results suggests that the effects of restriction order are highly heterogeneous

depending on the underlying population, with the direction of the effect being consistently

negative, as expected.

The coefficient of the interaction between Ω and I, β4, is negative with an absolute value

smaller than β1. This implies that an increase in perceived risk index of contracting the

disease Ω still decreases mobility when restriction order is announced, but with a smaller

impact.

Now we turn to the bottom half of Table 2 to interpret the estimates of coefficients in

Equation (5) determining perceived risks. Parameter γ measures the relative importance of

cases in neighboring counties relative to local cases. The estimate γ̂ shows that an increase

in COVID-19 confirmed cases in neighboring counties would indeed raise the perceived risk

locally, but individuals discount that increase at rate 0.2. This implies that spillover of risks

across regions are potentially important, but the magnitude is not very large in the data

relative to local cases.
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To study the magnitude of these estimates, we consider again the county with median

characteristics {P̄ , Ō, D̄}. If the county starts out with zero confirmed cases locally, and

with neighboring confirmed cases at the sample median, suppose there is a unit increase8

in local cases. How much would individuals reduce traveling without government imposing

any restriction order? By combining estimates of parameters, our results suggest that the

mobility reduction is 2.31%. These estimates suggests that decreases in mobility could take

place well before the official announcement of restriction orders, which is in line with the

findings in Figure 7 and evidence from OpenTable reservations in Kaplan et al. (2020).

The direct effects of demographic characteristics, and their interactions with confirmed

cases, on perceived risk, shown in the bottom half of Table 2, lead to a very similar conclusion

to the one we reached on the their effects on restriction order. Counties with a lower share

of the population that voted Republican in the 2016 Presidential Election, higher share of

elderly population, and higher population density have higher perceived risk in levels, and

are more responsive to increases of disease prevalence.

5 Discussion and Conclusion

In this paper, we combine a novel GPS location dataset with COVID-19 cases and population

characteristics at the county level to estimate the effects of disease prevalence and restriction

orders on individual mobility. We find that population mobility reacts strongly to changes

in perceived disease prevalence and government stay-at-home announcements: a rise of local

infection rate from 0% to 0.003% reduces mobility by 2.31%, and a government restriction

order to stay-at-home reduces mobility by 7.87%. Additionally, we find that these effects of

information on individual behaviour depends on characteristics of the underlying population.

In particular, counties with larger shares of population over age 65, lower share of population

voted Republican in the 2016 Presidential Election, and higher population density are more

8Due to the normalization, we could interpret the unit increase as a shift to the median prevalence level
in counties with confirmed cases as of 3/20/2020, i.e. Mecklenburg, NC.
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responsive to disease prevalence and restriction orders.

There are a couple of important limitations to our work in its current iteration. First,

our perceived risk index Ωit does not line up with the exact interpretation of Ω in the

model; to be specific, we are providing a linear approximation to Ω, a strictly positive

quantity. Our model fits the data well, as Ω̂it is positive in over 99.9% of cases. Future work

could include a submodel for Ω so that we can directly interpret the estimated quantities as

perceived risk. Second, we have not yet included a model of endogeneity. Presumably, travel

decisions and perceived risk are simultaneously determined. We have begun to study how

to incorporate this into an extended model. Lastly, we plan to include more demographic

controls such as industry composition and share of workers in essential jobs. These could

affect the substitutability between on-site work and work-from-home, hence affecting changes

in mobility. and these will be included in future versions of the project being continuously

updated on SSRN.
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